
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Implementing Rabin-Karp and Hash Functions for

Streamlined Search Engine Architecture.

Ahmad Thoriq Saputra - 135221411

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113522141@std.stei.itb.ac.id

Abstract— This paper explores the implementation of the Rabin-

Karp string matching algorithm and custom hash functions in the

development of a streamlined search engine architecture. The

incorporation of the Rabin-Karp algorithm enhances the search

efficiency, allowing users to input queries and obtain relevant

results swiftly. Custom hash functions contribute to overall

performance by converting variable-length strings into numerical

representations. The synergy between these algorithms provides an

optimal solution for matching user queries with dataset entries,

demonstrating the efficacy of algorithmic techniques in search

engine design. The paper concludes by acknowledging the

foundational role of Rabin-Karp and hash functions in

streamlining search processes, highlighting their impact on search

engine architecture.

Keywords—Hash Function, Pattern Searching, Rabin-Karp,

Search Engine, Algorithmic Techniques.

I. INTRODUCTION

In the complex world of search engine design, advanced

algorithms play a crucial role in determining overall

effectiveness. This paper explores the use of the Rabin-Karp

algorithm and hash functions to improve the efficiency of

modern search engines.

As information retrieval methods continue to evolve, there's

a constant need for cutting-edge approaches. This research aims

to contribute to this ongoing effort by investigating how

integrating the Rabin-Karp algorithm and hash functions can

enhance search engine architecture.

Compared to traditional designs, this approach combines the

strengths of the Rabin-Karp algorithm, known for efficient

string matching, and hash functions, valued for quick data

indexing and retrieval. The goal is to explain these algorithms,

detailing how they can be practically integrated into search

engine frameworks and how this integration impacts query

processing.

Moving beyond theory, the research aims to bridge the gap

between abstract algorithms and real-world use, providing

specific steps for seamlessly incorporating these advanced

techniques into search engine architecture.

The central research question driving this exploration is: How

does combining the Rabin-Karp algorithm and hash functions

improve search engine architecture? This question guides the

research journey, focusing on not just identifying potential

improvements but also highlighting the considerations and

trade-offs involved in this integration.

Divided into well-structured sections, this paper provides a

detailed analysis of the Rabin-Karp algorithm and hash

functions, exploring both their theoretical foundations and

practical implications in search engine architecture. By shedding

light on both theory and practice, the research aims to offer

valuable insights into optimizing search engine performance.

Ultimately, the goal is to empower practitioners and researchers

with practical knowledge, fostering a deeper understanding of

how algorithmic advancements impact the evolving landscape

of search engine technology.

II. THEORY FOUNDATION

A. Query Processing

Query processing transforms a high-level query into lower-

level operations, involving stages like decomposition,

optimization, code generation, and execution. Additional steps,

including data localization and global query optimization, are

crucial between decomposition and optimization. Data

localization identifies query fragments, utilizing horizontal and

vertical fragmentation to break the global relation into refined

fragments, producing an improved query.

In the context of search engines, query processing is integral

to retrieving information from user input. Steps like

decomposition, optimization, and execution parallel how search

engines analyze user queries. Data localization aligns with a

search engine's task of identifying relevant data fragments.

Understanding query processing unveils the behind-the-scenes

mechanisms powering efficient search engine operations.

A.1. User Query Input

The initial step in the user-query journey involves scanning

and parsing, where the search engine meticulously examines the

input to ensure it adheres to syntactic and semantic standards.

This process not only ensures the user's query is correctly

interpreted but also sets the stage for an enhanced user

experience by understanding user intent even in the presence of

typos or colloquial language.

A.2. Query Understanding

Building on the principles of data localization, the search

engine dynamically navigates through vast datasets, identifying

relevant sources and fragments that align with the user's search

intent. This process mirrors the quest to localize and pinpoint

data, enhancing precision in information retrieval and ensuring

the user is presented with the most contextually relevant results.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

A.3. Indexing and Fragmentation

Global query optimization becomes the engine's strategy to

break down the user's query into manageable fragments, akin to

the optimization steps in traditional query processing. In the

realm of search engines, this involves leveraging sophisticated

indexing mechanisms and algorithms. These tools act as the

backbone, allowing the engine to navigate through massive

datasets swiftly and efficiently, significantly enhancing the

speed at which relevant information is retrieved.

A.4. Optimized Retrieval

As the user's query progresses through the optimization

phase, the search engine refines its strategy for retrieving

information. It employs advanced techniques like relevance

ranking, considering factors such as user behavior, context, and

quality of content. This ensures that the user is presented with

the most pertinent and valuable information, aligning with the

evolving expectations of a modern and discerning user base.

A.5. Result Presentation

The final stage of code generation and execution in the

context of search engines focuses on translating the optimized

query into an understandable and user-friendly format. The

search engine generates executable code to fetch and present

search results, emphasizing an aesthetically pleasing and

intuitive user interface. This stage bridges the technical

complexities of the search process with the user's expectation of

a seamless and visually appealing presentation of information.

In essence, by aligning with the principles of traditional query

processing, search engines can transform user queries into an

optimized and efficient journey, enriching the user experience

and ensuring the swift delivery of relevant and valuable

information. This symbiotic integration of query processing

principles and search engine mechanisms shapes the landscape

of digital information retrieval in a dynamic and user-centric

manner.

Fig.2.1. Query Processing Search Engine

(Source: Author’s Documentation)

B. Modulo

Modulo, denoted by the symbol "mod," is a fundamental

arithmetic operation representing the remainder when one

integer is divided by another. It is expressed as the residual value

of the division of a given integer (denoted by a) by another

integer (denoted by m).

In mathematical terms, if we have two integers 'a' and 'm'

(where m > 0), the operation a mod m, read as "a modulo m,"

yields the remainder when 'a' is divided by 'm.' This operation is

defined by the equation a mod m = r, where 'r' is the remainder,

and a can be expressed as the product of m and an integer

quotient 'q' plus the remainder 'r.'

The modulus, denoted by 'm,' is crucial in this operation and

determines the range of the result. The outcomes of arithmetic

modulo m are confined to the set {0, 1, 2, ..., m – 1}. This set

encompasses all possible remainders when an integer is divided

by 'm,' creating a cyclical pattern where values repeat after

reaching 'm - 1.'

Let's consider the example formula for the modulo operation:

a mod m = r

Where:

• a is the dividend (the integer being divided),

• m is the divisor (the modulus),

• r is the remainder.

This formula encapsulates the essence of modulo arithmetic,

emphasizing its role in determining the remainder when 'a' is

divided by 'm.' The resulting remainder 'r' is a vital component

in various mathematical and computational processes,

showcasing the broad utility of the modulo operation beyond

simple arithmetic.

Modulo operations find versatile applications across various

mathematical and computational domains. One notable

application is in hash functions, where modulo is employed to

confine hash codes within a specific range. This utilization

ensures that the resulting hash values are bounded by the size of

the hash table, providing an efficient and deterministic mapping

of data.

C. Hash Function

In the ever-expanding landscape of data processing within

local and global networks, the imperative for expedited data

access and secure information exchange has driven computer

scientists to seek innovative solutions. Among these, hash

functions emerge as a cornerstone, working in conjunction with

other security technologies to ensure both the speed and

integrity of data transactions.

At its core, the verb "to hash," connoting the act of chopping

or scrambling, encapsulates the essence of what hash functions

accomplish. They intricately "scramble" data, transforming it

into a numerical value of fixed length, irrespective of the input's

original size. Commonly referred to as hashing algorithms or

message digest functions, hash functions find versatile

applications across computer science domains.

The properties of hash functions are designed with meticulous

precision to ensure their efficacy in various applications. Firstly,

they must be one-way, rendering it impossible to reverse the

generation of a hash value back into the original data. This

property is crucial for applications such as password storage,

where irreversibility ensures enhanced security. [5]

Secondly, hash functions must be collision-free, meaning no

two distinct input strings can produce the same output hash. This

characteristic, synonymous with cryptographic hash functions,

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

safeguards the uniqueness of hash values and is integral to the

prevention of unintended collisions.

Additionally, the speed of hash functions is paramount. To be

effective, hash functions must compute hash values rapidly. In

databases, where hash values are stored in hash tables to

facilitate swift access, efficiency is critical.

Fig.2.2. Hash Function Example

(Source: Author’s Documentation)

Two primary heuristic methods exist for generating hash

values: division and multiplication.

C.1. Mod Method

The mod method, a fundamental technique in crafting hash

functions, offers a straightforward yet effective approach to

mapping keys onto specific slots within a table. In this method,

the hash function h(key) is defined as the remainder of the key

when divided by the table size:

ℎ(𝑘𝑒𝑦) = 𝑘𝑒𝑦 𝑚𝑜𝑑 𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒

This operation, denoted as key mod table_size or key%

table_size, involves a single division operation, rendering

hashing by division notably fast and computationally efficient.

However, to ensure the effectiveness of the division method,

certain considerations come into play. It is advisable to avoid

table sizes that are powers of a number r, as this would result in

the hash function h(key) extracting only the lowest-order p bits

of the key if table_size = r p. This limitation could lead to an

uneven distribution of keys if the low-order p-bit patterns are not

equally likely.

Optimal results with the division method are often achieved

when the table size is a prime number. Nevertheless, even when

the table size is prime, an additional condition is imposed. If r

represents the number of possible character codes on a

computer, and table_size is a prime such that r mod table_size =

1, then the hash function h(key) = key mod table_size becomes

a summation of the binary representation of the characters in the

key, followed by a modulo operation with the table size.

For instance, let r = 256 and table_size = 17, wherein r mod

table_size = 1 (i.e., 256 mod 17 = 1). Consequently, for the key

37599, the hash is computed as 37599 mod 17 = 12.

Interestingly, for a different key, 573, the hash function yields

the same result, 573 mod 17 = 12. This phenomenon, known as

a collision, occurs when distinct keys produce identical hash

values, highlighting a key challenge in hash function design.

To mitigate such collisions and enhance the overall

robustness of the hash function, it is advisable to choose a prime

table size that is not too close to an exact power of 2. This

consideration contributes to a more even distribution of keys and

minimizes the likelihood of clustering, thereby optimizing the

effectiveness of the mod method in hash function

implementation.

C.2. Multiplication Method

The multiplication method, a prominent technique in hash

function design, introduces a strategic approach to transforming

keys into hash values. In this method, a constant real number c

within the range 0 < c < 1 is multiplied by the key k, and the

fractional part of k × c is extracted. The resulting value is then

multiplied by the table size m, and the floor of the result is taken,

represented by the equation:

h(k) = floor (m × (k × c mod 1))

Alternatively, it can be expressed as:

h(k) = floor (m × (k × c mod 1))

Here, the floor(x) function yields the integer part of the real

number x, and (frac(x) = x - floor(x) yields the fractional part.

An advantageous characteristic of the multiplication method is

its flexibility regarding the choice of m, the table size. Typically,

m is chosen to be a power of 2 (m = 2 p for some integer p),

facilitating easy implementation on most computers.

This method, grounded in mathematical precision and

adaptability, showcases the nuanced considerations involved in

crafting hash functions that are not only efficient but also

resilient in diverse computational environments.

The use of hash functions extends across a myriad of

applications in computer science, playing a pivotal role in

ensuring data integrity, security, and expedited information

retrieval. One prominent application lies in the encryption of

communication between web servers and browsers, where hash

functions contribute to generating secure session IDs for internet

applications and facilitating data caching. Moreover, hash

functions safeguard sensitive data, such as passwords, web

analytics, and payment details, by converting them into

irreversible and unique hash values. Digital signatures in emails

benefit from hash functions, providing a means to verify the

authenticity and integrity of electronic communications.

Additionally, hash functions are instrumental in efficiently

locating identical or similar data sets through lookup functions

in databases, optimizing the speed of data access.

In conclusion, hash functions use precise design and

mathematics to transform variable-length input into fixed-length

hash values. Whether using the mod or multiplication method,

the goal is to create one-way, collision-free, and efficient hash

functions for diverse computer science applications. This

exploration highlights the nuanced nature of hash function

design, a crucial tool in modern computing adapting to the

evolving landscape of data processing, security, and information

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

retrieval.

D. Rabin-Karp

The Rabin-Karp string matching algorithm introduces a

significant advancement in the realm of pattern matching within

a given text. It distinguishes itself from the Naive string-

matching algorithm by employing a more strategic and efficient

approach. Instead of scrutinizing every character in the initial

phase, the Rabin-Karp algorithm harnesses the power of hash

functions to streamline the pattern-matching process.

At its core, the algorithm calculates hash values for both the

pattern and each M-character subsequence of the text. This

calculated hash value serves as a unique identifier for the content

within the pattern or substring, providing a rapid and effective

means of comparison. The brilliance of Rabin-Karp lies in its

ability to leverage these hash values, minimizing the need for

extensive character-by-character matching and optimizing the

overall search procedure.

To delve deeper into the steps of the algorithm, the

initialization involves selecting a prime number 'p' as the

modulus to prevent overflow and ensure a balanced distribution

of hash values. The choice of a base 'b,' often a prime number

corresponding to the character set size, further enhances the

algorithm's efficiency. Setting the initial hash value 'hash' to

zero marks the starting point for subsequent hash calculations.

The algorithm then proceeds to calculate the initial hash value

for the pattern by iterating over each character from left to right.

Each character's contribution to the hash value is determined by

a formula that considers its position within the pattern. This step

yields a hash value that uniquely represents the entire pattern.

The subsequent steps involve sliding the pattern over the text

and continuously updating the hash value for each substring. As

the pattern advances one position at a time, the algorithm

efficiently adjusts the hash value by considering the

contributions of the outgoing and incoming characters.

The distinctive feature of Rabin-Karp becomes particularly

evident in the search phase. Iterating through the text, the

algorithm calculates hash values for substrings of a specified

length. When a match is potentially detected (i.e., the hash

values of the pattern and substring coincide), the algorithm

performs a more granular character-by-character comparison to

confirm the match. If confirmed, the starting index of the

substring is stored as a valid answer.

In essence, the Rabin-Karp algorithm capitalizes on the

strengths of hash functions to expedite the pattern-matching

process. By transforming the content into hash values and

judiciously comparing these values, Rabin-Karp significantly

reduces the computational load associated with exhaustive

character matching, making it a powerful and efficient tool for

various text processing applications.

D.1. Rabin-Karp Steps [10]

1. Initialize Hash Values

• Choose a prime number 'p' as the modulus to

avoid overflow and ensure a good distribution of

hash values.

• Select a base 'b,' typically a prime number and

often the size of the character set (e.g., 256 for

ASCII characters).

• Set an initial hash value 'hash' to 0.

2. Calculate Initial Hash Value for the Pattern

• Iterate over each character in the pattern from left

to right.

• For each character 'c' at position 'i', calculate its

contribution to the hash value as,

(𝑐 × 𝑏𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑙𝑒𝑛𝑔𝑡ℎ−𝑖−1 𝑚𝑜𝑑 𝑝)

then add it to 'hash.' This yields the hash value for

the entire pattern.

3. Slide the Pattern Over the Text

• Calculate the hash value for the first substring of

the text that is the same length as the pattern.

4. Update the Hash Value for Each Subsequent Substring

• To slide the pattern one position to the right,

remove the contribution of the leftmost character

and add the contribution of the new character on

the right.

• The formula for updating the hash value when

moving from position 'i' to 'i+1' is:

ℎ𝑎𝑠ℎ = (ℎ𝑎𝑠ℎ − (𝑡𝑒𝑥𝑡[𝑖 − 𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑙𝑒𝑛𝑔𝑡ℎ]
 × (𝑏𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑙𝑒𝑛𝑔𝑡ℎ−1 𝑚𝑜𝑑 𝑝 × 𝑏 + 𝑡𝑒𝑥𝑡[𝑖]

5. Search for Pattern Matches

• Start iterating from the beginning of the string.

• For each substring of length 'm,' calculate its hash

value.

• If the hash value of the current substring matches

the hash value of the pattern:

o Perform a character-by-character

comparison to confirm the match.

o If the characters match, store the starting

index as a valid answer.

• Continue iterating for the next substrings.

6. Return Valid Starting Indices

• Return the starting indices of the substrings where

matches were confirmed as the required answer.

Fig.2.3. Rabin-Karp Process

(Source: Author’s Documentation)

These steps help us understand how the Rabin-Karp algorithm
works to find words or patterns in a block of text. Instead of
checking each letter one by one, it uses a clever math trick called
a hash function to quickly compare chunks of text and the
pattern we're looking for. This way, it can find matches faster
and more efficiently.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

D.2. Application of Rabin-Karp

The Rabin-Karp algorithm finds practical applications in

various areas where efficient pattern matching is crucial. One

notable use is in text processing and search engines, where it

aids in quickly identifying and locating keywords or phrases

within large volumes of textual data. Additionally, the algorithm

is employed in plagiarism detection systems, helping to detect

similarities between documents or pieces of text. In

bioinformatics, Rabin-Karp finds utility in DNA sequence

matching and analysis, contributing to genetic research and

identification of genetic patterns. Moreover, the algorithm has

been applied in network security for intrusion detection,

recognizing patterns indicative of potential threats or attacks. Its

versatility and efficiency make the Rabin-Karp algorithm a

valuable tool across domains where pattern matching is a

fundamental requirement.

III. IMPLEMENTATION

A. Search Country

The Search Country Engine is a purpose-built application

designed to streamline the exploration of an extensive dataset

containing detailed information about countries. Rooted in the

efficiency of the Rabin-Karp algorithm, the search engine is

crafted to provide users with a swift and accurate means of

discovering relevant country-related data. The dataset

encompasses a variety of attributes, including country names,

capitals, populations, and geographical details, making it a

comprehensive resource for users seeking diverse information.

The Search Country Engine prioritizes a user-friendly

experience, allowing individuals to effortlessly retrieve

information about specific countries or explore nations that

match their search criteria. This section will delve into the

specifics of data collection, preprocessing steps, and the

distinctive features of the Search Country Engine, showcasing

its capabilities in empowering users to seamlessly navigate and

extract valuable insights from the rich dataset.

B. Country Data

Fig.3.1. Countries Dataset

(Source: Author’s Documentation)

The provided dataset is a Python dictionary containing key-

value pairs representing information about different countries.

Each country, denoted as a key (e.g., "USA," "Canada"), is

associated with an inner dictionary encapsulating details such as

its capital city, population count, and land area in square

kilometers. For instance, the entry for "USA" indicates that its

capital is "Washington, D.C.," the population is 331,002,651,

and the land area is 9,833,517 square kilometers. This structured

format allows for organized storage and retrieval of essential

country-specific data, making it suitable for various applications

such as data analysis or the development of a search engine

focused on countries. Additional countries can seamlessly be

incorporated into the dataset using the same structure.

C. Hash Function

Fig.3.2. Hash Function

(Source: Author’s Documentation)

The ‘hash_function’ Python function employs a rolling hash

mechanism to efficiently compute hash values for variable-

length strings. It iterates through each character in the input text,

updating the result by multiplying the current value by 256 and

adding the Unicode code point of the character. The result is

then taken modulo ‘prime_mod’ to constrain the hash value.

This approach, utilizing a base of 256 for compatibility with

ASCII characters, generates a numerical representation of the

input text, making it suitable for tasks like hash table

implementations or pattern matching algorithms such as Rabin-

Karp.

D. Rabin-Karp Algorithm

Fig.3.3. Rabin-Karp Function

(Source: Author’s Documentation)

The ‘rabin_karp_search’ Python function implements the

Rabin-Karp string matching algorithm for searching a pattern

within a given text. It employs a rolling hash technique using the

‘hash_function’. The function initializes a prime modulus

‘prime_mod’ and calculates the hash value for the input pattern.

It then iterates through the text, computing hash values for

overlapping substrings of the same length as the pattern. If a

match is found between the hash values and the actual

substrings, indicating a potential pattern occurrence, the

function returns the starting index of the match. If no match is

found in the entire text, the function returns -1. This algorithm

optimizes string matching by leveraging hash values, offering a

more efficient alternative to exhaustive search methods.

E. Other Functions

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig.3.4. Search Country Function

(Source: Author’s Documentation)

The ‘search_country’ Python method performs a case-

insensitive search for countries that match a given query within

a dataset. It initializes a lowercased version of the query and

iterates through the countries in the dataset, applying the Rabin-

Karp string matching algorithm to efficiently identify matches.

If a match is found, the method verifies if the country name starts

with the query to ensure accurate results. Matching countries

and their corresponding information are appended to a list. The

method then prints the results, displaying the found countries

and their details, or indicating that no matches were found. This

function provides a user-friendly interface for querying and

retrieving information about countries, utilizing the Rabin-Karp

algorithm for an optimized search experience.

Fig.3.5. Display Country Info Function

(Source: Author’s Documentation)

The ‘display_country_info’ Python method takes a country

name and its corresponding information as input and prints

formatted details about the country. It prints the country name,

capital, population, and land area in square kilometers. This

function is designed to enhance the readability of the

information displayed to the user, providing a clear and

organized presentation of key country attributes. It is typically

used in conjunction with other functions, such as in the

‘search_country’ method, to present detailed information about

matching countries in a user-friendly manner.

Fig.3.6. Search Engine Runer

(Source: Author’s Documentation)

The ‘run_search_engine’ Python method initiates a simple

command-line search engine for querying and retrieving

information about countries. It displays an ASCII art title and

enters a continuous loop prompting the user to input a country

name. The user can type 'exit' to terminate the search engine. For

valid inputs, the method invokes the ‘search_country’ function,

which performs a case-insensitive search for matching countries

in the dataset and displays relevant details. If the user provides

an empty input, a prompt for a valid country name is issued. The

loop continues until the user chooses to exit, providing an

interactive and visually appealing interface for exploring

country information.

F. User Interface and Program Output

Fig.3.7. Beginning of The Program

(Source: Author’s Documentation)

Fig.3.8. Program Output Country Not Found

(Source: Author’s Documentation)

Fig.3.9. Program Output Input is BLANK

(Source: Author’s Documentation)

Fig.3.10. Program Output of Country Detail

(Source: Author’s Documentation)

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig.3.11. Program Output of Countries Details

(Source: Author’s Documentation)

Fig.3.12. Program Output Exiting
(Source: Author’s Documentation)

IV. CONCLUSION

In conclusion, the development of the "Search Country"

program represents a successful integration of advanced

algorithms into a practical application. By implementing the

Rabin-Karp string matching algorithm and hash function, the

program enables users to input a country name and promptly

retrieve detailed information. The utilization of the Rabin-Karp

algorithm enhances search efficiency, optimizing the process of

matching user queries with country names in the dataset.

Additionally, the hash function contributes to the overall speed

and performance of the program by efficiently converting

variable-length strings into numerical representations. This

successful implementation underscores the importance of

algorithmic strategies in real-world applications, showcasing

their impact on user experience and program functionality.

Overall, the "Search Country" program exemplifies the seamless

integration of theoretical concepts into practical solutions,

demonstrating the potential for algorithmic innovation in

program development.

V. ACKNOWLEDGMENT

I would like to express my deepest gratitude to God, the

source of all knowledge and wisdom, for granting me the

strength and inspiration to complete this paper. My sincere

appreciation extends to my esteemed lecturer, Dr. Ir. Rinaldi

Munir, M.T., for his invaluable guidance, unwavering support,

and insightful feedback throughout the research and writing

process. I am also grateful to Monterico Adrian, S.T., M.T., for

his assistance and encouragement. Their expertise and

dedication have been instrumental in shaping this paper. I am

truly blessed to have had the opportunity to learn and grow under

their mentorship.

REFERENCES

[1] A. D. Sawarkar and J. M. Waghmare, "Query Processing and Query

Optimization in Distributed Database: A Survey," April 2014.

[2] "Bidadari Surga." Modulo: Konsep dan Penggunaannya dalam
Matematika, May 2023, https://bidadarisurga.com/modulo. Accessed 8

December 2023.

[3] Munir, Rinaldi. "Teori Bilangan Bagian 1" Matematika Diskrit, 2023.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-

2024/matdis23-24.htm. Accessed 8 December 2023.

[4] Munir, Rinaldi. "Teori Bilangan Bagian 3" Matematika Diskrit, 2023.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-

2024/matdis23-24.htm. Accessed 8 December 2023.
[5] Malviya, Nitesh. "Introduction to Hash Functions." Infosec Institute,

November 2020,

https://resources.infosecinstitute.com/topics/cryptography/introduction-
to-hash-functions/. Accessed 8 December 2023.

[6] 1&1 IONOS. "Hash Function: How Securely Do They Protect Data?"

October 2020, https://www.ionos.com/digitalguide/server/security/hash-
function/. Accessed 8 December 2023.

[7] ranadeepika2409. "What are Hash Functions and How to Choose a Good

Hash Function?" GeeksforGeeks, n.d.,
https://www.geeksforgeeks.org/what-are-hash-functions-and-how-to-

choose-a-good-hash-function/. Accessed 8 December 2023.

[8] javatpoint.com. "DAA: Rabin-Karp Algorithm." JavaTpoint,
https://www.javatpoint.com/daa-rabin-karp-algorithm. Accessed 8

December 2023.

[9] programiz.com. "Rabin-Karp Algorithm." Programiz,
https://www.programiz.com/dsa/rabin-karp-algorithm. Accessed 8

December 2023.

[10] GeeksforGeeks. "Rabin-Karp Algorithm for Pattern Searching."
GeeksforGeeks, https://www.geeksforgeeks.org/rabin-karp-algorithm-

for-pattern-searching/. Accessed 8 December 2023.

STATEMENT

I hereby declare that the paper I have written is my own work,

not a reproduction or translation of someone else's paper, and it

is free from plagiarism.

Bandung, 9 Desember 2023

Ahmad Thoriq Saputra, 13522141

https://bidadarisurga.com/modulo
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/matdis23-24.htm.%20Accessed%208%20December%202023
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/matdis23-24.htm.%20Accessed%208%20December%202023
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/matdis23-24.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/matdis23-24.htm
https://resources.infosecinstitute.com/topics/cryptography/introduction-to-hash-functions/
https://resources.infosecinstitute.com/topics/cryptography/introduction-to-hash-functions/
https://www.ionos.com/digitalguide/server/security/hash-function/
https://www.ionos.com/digitalguide/server/security/hash-function/
https://www.geeksforgeeks.org/what-are-hash-functions-and-how-to-choose-a-good-hash-function/
https://www.geeksforgeeks.org/what-are-hash-functions-and-how-to-choose-a-good-hash-function/
https://www.javatpoint.com/daa-rabin-karp-algorithm
https://www.programiz.com/dsa/rabin-karp-algorithm
https://www.geeksforgeeks.org/rabin-karp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/rabin-karp-algorithm-for-pattern-searching/

